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Abstract—A basic procedure is given for converting a pair of coupled two-dimensional integral
equations relevant to mixed boundary value problems with annulur type regions to two non-coupled
integral equations. The procedure utilizes fundamental solutions to the corresponding internal and
external problems in order to sepitrate the coupled equations and write thetr solution in series form.
The method is first applied to axisymmutric shear loading of an anoular crack in a homogencous
transversely isotropic material {(where the crack plane is paraliel to the plane of sotropy) and to
uniform tensile loading of an annular crack in a homogencous isotropic matenal. Stress intensity
factors are comparced with previous analysis to test the accuraey ot the solution. New results for
stress intensity factors are given for the arbitrary normad loading of an annalar crack in an
inhomoegeneous isotropic moedium.

[ INTRODUCTION

Many problems in solid mechanics, fluid mechanies, clectromagneties, cte., sre all mathe-
matically described by identical equations and full into the category of potential theory.,
After the unificd governing cquations have been established and their general solations
found, a large class of problems can be solved through the same approach. This not only
simplifies the solution procedures for various problems but also helps in understanding the
relations between different physical phenomena. This paper develops a simple solution
procedure appropriate to a class ot annular type planar mixed boundary value problems
in potential theory. Problems of this nature ¢an be deseribed by o pair of coupled two-
dimensional integral equations, Here a simple method utilizing the fundamental solutions
for the individual intertor and exterior problems s developed to uncouple the equations
and write the solution in series form.

Before the method can be applicd to various problems. Green's functions for the
individual interior and exterior regions must be known. Although the method used here
applies to annular type regions with non-circular boundiries and finite bodies, attention
will be focused on circular boundaries and infinite bodies since the Green's functions for
the interior and exterior domains have closed form analytical expressions. Hence this paper
applies the method to analyze the circular annular cruck 1 an infinite medium.

The interior and exterior fundamental solutions for circular cracks have generally been
obtained separately, applying the same mathematical method in cach case [e.g. Sneddon
and Lowengrub (1969} : Cherepanov (1979) : Kasstr and Sih (1973) : Guidera and Lardner
(1975) ; Stallybrass (1981): Fabrikant (1989)]. In many circumstances, the two solutions
can be direetly related through elementary algebraic manipulations. This is illustrated for
actreular crack under symmetric tensile concentrated loading in an infinite inhomogencous
isotropic material and for axisymmetric shear loading of an infinite homogencous trans-
versely isotropic material when the cruck plane is paraliel to the plane of isotropy. These
two cases are chosen since they are needed in subsequent analysis for the annular crack.

The annular crack problem under normal loading in an infinite homogencous isotropic
material has recetved considerable attention from previous rescarchers [e.g. Smetanin
{1968) : Moss and Kobayashi (1971): Muastrojannis and Kermanidis (1981): Choi and
Shield (1982): Mastrojannis (1983); Sclvadurai and Singh (1985); Clements and Ang
(1988)]. The annular crack in a thick walled cylinder under normal loading was analyzed
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by Nied and Erdogan (1983). Axisymmetric torsion of an annular crack in an infinite
isotropic material was also studied by Chot and Shield (1982). In this paper the method
which is developed is first tested against several of these previous solutions to illustrate the
accuracy of the calculations. The method is then used. with no additional difficulty, to
analyze the annular crack in an isotropic inhomogeneous material whose elastic modulus
varies as a power function of depth under conditions of arbitrary normal loading.

2. FORMULATION

In this section the appropriate integral equations are given and a general form of the
solution is obtained. Although subsequent attention will focus on the circular annular crack
in an infinite body. the form and solution of the integral equations have a more general
application to annular type planar cracks with non-circular boundaries in a finite body. In
deriving the integral equations for non-circular annular type cracks, the symbol Q with
attached superscripts and subscripts represents a planar area. The plane containing the
crack is denoted by Q, which is divided into the four subsets Q,, Qf. Q, and QhIf ¢
denotes the empty set, the following relations are assumed to hold between the four subsets
as illustrated in Fig. 1 (a—c)

QA= QuQ=Q,. (1)
Q=g Quh=Q,, (2)
QNN =T QinQ)=Q. (3)
QuQ, =Q QU =Q; (4)
Q.
Q, U Q.=Q,

Fig. Ha). The regions Q, and Q3.

Q,

Q, UQp=Q,

Fig. [(b). The regions Q, and Q3.

Q,

Q,.uUQuQ,=Q,

Fig. 1(c). The regions Q,. Q. and Q.
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For the special case of a circular geometry to be considered in detail later, Q, is a circular
area of radius r = a. Q) is a circular area of radius r = b, b > a, and Q! is the annular
regiona<r<h.

Deriving the integral equations for the annular type crack utilizes the solution of two
fundamental integral equations for the regions , and Q,. These integral equations take
the form

J H(Q,. Mo (Q.Q7) dQ = P, H(Q,.Q5). &)
QJ

f H(Q,. Q)00 (Q.Q5)dQ = P,H(Q,.Q}). (6
Q.

Y

where the kernel H is a known function, P, and P, are constants and ¢!, of are the
fundamental solutions of the integral equations. For compactness the following notation
has been employed. Considering a polar coordinate system centered in ,, the notation
H(R,.Q}) is equivalent to H(r.0.ry. 0,); r.0€Q,.ro. 0, €Qj. Physically speaking. in terms
of fracture mechanics applications, eqn (5) can be interpreted as an integral equation for
the normal stress o) in the bond ligament Q, of an external crack in an infinite medium
loaded by equal and opposite point normal forces P, at a point on the external crack faces
in Q3. In this interpretation. H{Q,. Q) is the normal displacement on the surface of a half
space at a point in Q, caused by a unit normal force at a point in Q. Equation (6) then
corresponds to an internal crack over the arca Q.
The solutions to the integral equations are assumed to cxist in the forms

o) (Q,. Q) = £,P, £, (Q,. Q). (7)

ah (. Qo) = APy S (. Q1), (8)
where f, and f, are known functions in Q, and Q, respectively, and 4, and 4, are two real
constants satisfying 4, < land 4, < .

Now consider the following pair of coupled integral equations for the unknown
functions o, and o,,:

J‘ H(Q,,.Q)aAQ,Q",’)dQ%-J H(Q,.Q)a,(Q,Q2)dQ = PH(Q,. Q). 9)
Q,

a1,
f H(Q,.Q)a,(O, Qf,‘)de‘-j H(QW, Q)0,(Q, Q1) dQ = PH(Q,, Q). (10)
0,

a,

If the solutions in eqns (7) and (8) are known, then the coupled equations (9) and (10) can
be transtormed to the following uncoupled equations:

0,(Q,. Q) = 2,P (/Z(Q,..Qf )—;-bf LA Q) Q) dQ)
o,

+;'u’;‘bj. [, Q) L SQ.Q)e, (., Q)ddQ, (1)

04(. Q) = /’-hP(ﬁ(Qme)*ZuJ ﬁ:(Qh-Q)ﬁ:(QvQ:)dQ)
a,

+;"'}"’j:, S (.. Q) J- LQ. D)o, (. QN A dQ. (12)
£ nﬁ

SAS 29:8-H
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To obtain the uncoupled equations given above, the following procedure may be
followed. Temporarily treating 6 as a known quantity in eqn (9) and moving it to the right
hand side. o, can be written using eqn (7) as

0.,(Q,. Q) = iquu(Q{,.Qi)—/},J SiQ,.Q)0,(Q.Q)) dQ. (13)

Q,

Similarly. treating o, as a known quantity in eqn (10). o, can be given by the superposition
6,(Q,. Q) = }.,.Rf;,(Qh.Q:)—).hJ Q. Q)6 (Q.Q)) dQ. (14)
Q,

where eqn (8) has been used. It is easily verified that eqns (13) and (14) automatically
satisfy the coupled eqns (9) and (10). Substituting eqn (14) into eqn (13) leads directly to
eqn (11) while substituting eqn (13) into eqn (14) gives eqn (12).

Equations (1) and (12) are Fredholm integral equations of the second kind. General
solutions to these equations are given in Neumann series form as:

72,20 = 4,P Y (= D)"A0,.(Q,.Q)). (15)
(. Q) = 4, P Y (= 1)400,,(2,. Q). (16)

n-0

The terms in cach series are given by the recursion relations

a,,(Q,. Q) = j S, Doy, (82, QMdQ, nx 1, 17

L,
64,82, Q) = J S8 Q)a,, (QLQNAQ, n =, (18)

Q,
ﬂu.(l(Q‘n Q:) = /::(Qu‘ Q:), ( 19)
”h,n(Q;n Q:) = ,/;,(Qh‘ Q:). (20)

and

M= ozl 2n
=g o nz | (22)
iy =4 =1 (23)
The serics solution in cqns (15) and (16) is essentially a reflection method or an iterative

solution to eqns (13) and (14) [and hence eqns (11) and (12)]. Discussions on convergence
of such series solutions can be found in many references on integral equations [see for
example Tricomi (1985)] and will not be examined here. Subsequent numerical calculations
verify a fast convergence with relatively high accuracy.

The above derivations can be carried out without any reference to a physical back-
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ground or application of the coupled integral equations (9) and (10). Therefore the solutions
in eqns (15) and (16) are of general mathematical significance for various types of problems
in potential theory. This solution procedure is certainly not new to potential theory or
fracture mechanics. however the applications considered presently do not seem to have
been previously analyzed.

It is important to note that the above solution is applicable to annular type regions
with boundaries of arbitrary shape (not necessarily circular) and hence is a general solution.
For the solution of a particular problem, the main requirement is knowledge of the
fundamental solutions of eqns (5) and (6). For fracture mechanics applications, these
fundamental solutions correspond to point force loading of the crack faces.

3. SOLUTION TRANSFORMATIONS

As mentioned in the previous section, knowledge of the individual fundamental solu-
tions is required in order to solve the coupled problem. These solutions have been given as
analytical expressions only for the case of circular geometries in the past and present
literature. Although an analytical form to the solutions is not a requirement, present
considerations will be limited to a circular geometry.

Knowledge of both (internal and external) fundamental solutions for a circle is necess-
ary. In some cases, such as the circular internal and external crack in an infinite medium,
both fundamental solutions have been previously obtained by methods of potential theory
[c.g. Sneddon and Lowengrub (1969) ; Kassir and Sih (1975) : Fabrikant (1989)]. In these
cases, the investigators have used the same mathematical method to obtain both solutions
independently. On the other hand. in some cases only one of the fundamental solutions
may be known. Here a simple method is used illustrating the relationship between the
fundamental solutions for a circle which can be used to obtain one from knowledge of the
other without solving a similar boundary value problem.

As an example, consider an infinite inhomogencous medium with the elastic modulus
£ = Ey|z]" (£, = constant, ) € a < I) containing a circular crack (internal or external) of
radius r = « located on the plane = = 0. A polar coordinate system (r, 0) is taken at the
crack center. The crack is opened by a pair of concentrated normal forces + P at the point
(ro.0,,0) applied to the upper and lower crack faces. Symmetry allows the reduction to a
half space problem with no surface shear stresses. The normal surface displacement (apart
from a constant multiplier) of an inhomogencous half space caused by a unit point normal
force has been found previously by Rostovtesv and Khranevskaia (1971) as

H(r,0,r5,0,) = [r*+ri—=2rrycos (0—0,)] "' *2/2, 24)

The two fundamental integral equations (5) and (6) can be written as:

(a) for a penny-shaped crack of radius b

f:"J-“ a’,‘,’(y, (/)qu._»()o_)_p dpde P
0 b [r:

= 2pcos (607 = TR ey cos 0y =B

b<r<w, 0€0<2n, 0<ro<bh 0<0,<2n; (25)

(b) for a circular external crack of radius «

J‘ZR Jﬂ a'(?(p_ ¢. o, 0())/7 dﬂdd’ = P
0 n

[FP+p*=2rpcos(p—0)) "2 7 [r2 475 =2rrg cos (0, — )]+ 77
+0+yrcos@+frsind,

O<r<a 0<0<€2r a<ry<cxc, 0<0,<2n (26)
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The additional terms J. y and f in eqn (26) are constants which are related to rigid body
displacements at infinity which may arise in external crack problems [e.g. Stallybrass (1981) :
Fabrikant ez a/. (1986); Gao and Rice (1987)]. For solving annular type internal cracks.
the case 6 = y = f = 0 is appropriate which implies the vanishing of all displacements at
infinity.

The similarity of the two integral equations is apparent and in fact both can be put
into the same form. To illustrate this, substitute

b b
X= -, Fr=-, Fy= -, 27)
r ra
into eqn (23) resulting in
J J‘ ! G (x. . Fo.0,)dxdep B P
o Jo [FPH+xi=2Fxcos(p—O]** V2 [FP 473 —2rrgcos (0, — )]V :
D<ri<l, 002, I<iy<x, 0<56,<2n, (28)
where
-0 - 0 b b —-Iz-(x+ g2
G (X, (f). Fo. 04) = 6, \;.(pﬁ;-yn R R 28 (29)
- 0

Similarly substituting

P r . ro
x=', F= . Fi= (30
a a a
into eqn (26) gives
J:"‘ J’ ) (ax, afy. 0)a*xdxde P
o Jo [FPHx7=2Fxcos (p—0))*" "2 7 [FP 472 =2rr, cos (0, BN (EE

0<i<l], 0<0<2n, I<fiy<=, 0<0,<2n 30

Equations (28) and (31) have identical forms and hence identical solutions. Having
one solution altows the other to be automatically obtained by the relation

ab th s
G:‘l’(/h (bv r(lw()l)) = U)(,)(“”, (bwt;w~()())u-h~r(|‘(l+1)p«}*14 (32)
P

0

The solutions for both cases have been given recently by Fabrikant (1989) as:

P omxfri-a*\ |
0
a(p.p.ro.tly) = —cos — | TR .
(P era.ln) = o 7<a'——p'> 0 +ri—2procos (0,—10)

O<p<a, a<ry<x, (33)

, 0 = £ eos™ bz-—rf,)““” !
05 (p. . 170.00) = 505 5 pi—b* p+ri—2procos (0o —0)

h<p<w, 0<ry<b. (34)

It is casy to verify that eqns (33) and (34) satisfy the relation (32). In the case of a
homogeneous material, « = 0 and the relation also holds. The same is true for a circular
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crack in a transversely isotropic material if the crack plane is parallel to the plane of isotropy
since in this case the normal stress on the crack plane is identical to the isotropic result
(Kassir and Sih. 1975 ; Fabrikant, 1989). It is important to note that eqn (32) holds only
in the case of vanishing displacements and rotations at infinity for the external crack
solution. Vanishing of the net force or moment will introduce additional terms in the stress
distribution for the external crack.

As a second example consider the case of shear loading. At the present time the
fundamental solution for point shear loading of neither an internal nor an external crack
in an inhomogeneous material appears to be available. Therefore, attention is directed to
an infinite transversely isotropic material where the crack plane is parallel to the plane of
isotropy. For this case antisymmetry conditions allow the reduction to an equivalent
problem for a half space = > 0. Taking a polar coordinate system r, 8 on the surface = = 0,
the tangential surface displacements «, and u, at the point (r. 8) caused by point shear forces
T, and T, applied at the point (r,.8,) in the r and @ directions respectively, can be found
from Fabrikant (1989) as

. 1 1 . T G, —r,e'@ 0y
wtit = 3G g ((T+iTe 004 (T -l D) 69

-

where i is the complex number, R? = r?4rj—2rrgcos (0 —0,) and G, and G, are material
constants. The internal fundamental solutions for point shear loading inside a penny-shaped
crack can also be found there. The shear stresses at a point (r, #) on the crack plane outside
the crack are given by

/ _ T,+.T U NN G’ 3 W0,
Ttity = \/) s r”» <( T ’I‘{)ZL"' ' (7 —i7,) 't ( "0:" 0, ): .
n- \/r'—b' r[r ro¢ |
b<r<aos, 0<ry<b, (36)

where the point forces of magnitudes T, and 7,, pointing in the radial and tangential
directions respectively, are applied at the point (rg, 8,) inside the crack of radius b.

Equation (36) displays the coupling between the radial and tangential stress
components. The previous solution procedure is developed for one unknown function inside
and outide the annular region (as in normal loading) and hence cannot be applied directly
to general shear loading. The extension to this case will not be taken up here. Instead
axisymmetric shear is considered which eliminates the coupling eflect. Integrating eqn (36)
gives the axisymmetric shear stresses

2
Vb r(, |
t-,(’ro)=—7', Al 5, b<r<ow, 0<ry<b, (37)
/2 2"’-’0
2 bl___? 2 |
To("’o)—”Tu rﬂiﬁ"-'—,, b<r<ow, O0<ry<hbh, (38)

n \ﬂ‘—b: r-=rg

where T, and T, are now ring loadings pointing in the r and 0 directions applied to the
penny-shaped crack at a radial distance of r,. The stress distributions in the above equations
are identical and independent of material constants, thus being equal to the isotropic results
which has been pointed out previously by Kassir and Sih (1975).

The external solutions for ring loadings of an external circular crack are also needed.
These can be obtained by extending results currently available in the literature but here it
is illustrated how they can be easily obtained from eqns (37) and (38) with the aid of
only algebraic manipulations. The procedure is analogous to the previous example for an
inhomogeneous material. The tangential displacements on the surface of a transversely
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isotropic half space under axisymmetric shear loading can be evaluated by integrating eqn
(35) giving

cos (6 —9,) db,

!
ur(ra r!)) = ; Ty{G‘ +G:)r() = = LI b
- Joo = 2rr,cos(—40,)

1
ug(r.ry) = 3 (G =Gy

. O0<r g <, (40)

J = cos (01 —8,)do,
i3

\,ﬁ"r3 +ry— 2:‘;;505 (=04

where again T, and 7, are ring loadings at a radial distance of r,,. The appearance of the
material constants only in the form of constant multipliers explains the independence of
the surface stresses from the elastic constants. The above displacements can be used to
formulate the axisymmetric integral equations for the internal and external cracks, and
using the previous transformations they can be put into identical forms. The resulting
stresses for an external crack of radius ¢ can be deduced as

2 V. - r

Trrg)=-T, % - + ., O0<r<ua. a<r,<x. (41
N
- A Y
e Ve —u r

tolrorg) = -Ty " v -0 O<r<u, a<r,<x. 42
T Jat=riher

It is important to point out that the above procedure is not necessarily new but it is one
that is seldom if ever applied in the literature. It provides a simple means of checking
solutions presently avatlable if both the internal and external problems have been solved.
If only onc is known, it allows the other to be casily obtained.

4 APPLICATIONS

In this section the previous results are used to analyze two different problems. In both
cases a circular geometry is used. The region 2, is interior to a circle of radius ¢ while
is exterior to a circle of radius b. The cracked region € is thus the annulus ¢ < r < b (Fig.
2). The annular crack is located in an infinite body since the corresponding fundamental
solutions are known for this case.

As a first example axisymmetric shear loading is considered. This solution is somewhat
simpler since there is no angular dependence. As noted curlier, for axisymmetric shear of
an annular crack in a transversely isotropic material, the solution is identical to the isotropic
case when the crack planc is parallel to the plane of isotropy. The solution is also the same
for radial and tangential shear and hence no subscripts indicating direction need be used.
The axisymmetric version of the integral equations (9) and (10) apply where the function
H(Q,. Q8 is given in egn (39) for radial shear and egn (40) for tangential shear. The

Fig. 2. Annular crack loaded in shear or tension,
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axisymmetric form of the solution in Section 2 is given with ¢ replaced by tand Pby T

since the problem is for shear.
The fundamental solutions to the axisymmetric version of eqns (5) and (6) are obtained

from the previous section as

ré’(r.ro)=ETa————M L . 0<r<a a<ry<x, 43)
n G —rire—rs
A"
Jb-rirs 1
B(rro) =T, ., b<r<ow, 0<ry<b. (44)

filrr) =~——=——=. 0<r<a, a<ry<w, (45)

NGECL

Iolrorg) = . h<r<w, 0<r,<bh (46)

Jri=pirri=r

The axisymmetric form of the series solution in eqns (15) and (16) become

1 (r,ry) =4, T i (=)t (rory). O<r<a, a<r,<bh, 47)
nel
1,(r.ry) = 4T i (=Dt (rory), b<r<ow, a<ry,<h, (48)
P
with
M= =2/m), n=0, (49)
T0(r. ry) = ~fj—;£ ~—;~—r-—-;—», O<r<a, a<ry<bh, (50)

T2, |
Th0(r,ry) = \/b,___rz T i, b<r<ow, a<r,<b, (51
\/r‘—b‘ r(r-—=rg)

\/p —a

r,,,, W(poro)dp, O0<r<a, a<ry<b, n2zt,

T,a(r.rg) = \/.:'._JA
a"—

__ L [
rh.,.("’o)—r\/;ijgi (r*=p?)

p ana(pro)dp, b<r<ow, a<ro<bh, nxzl.
(53)

The above solution in eqns (47) and (48) corresponds to a ring loading of magnitude
T at a radial distance of r, from the center. For a distributed loading t(r) ona < r < b, one
may replace T by t(ry)dry and integrate on a < ry < b. The parameter r, only appears
directly in the initial terms 1, 4(r, ro) and 1, o(r.r). For a distributed loading those may be
replaced by
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r & ~ :f-9
Tolr) = ——=—— - r(r ydre. O <r <a. (54)
2 2 Ja (ru —-r- )

! b=
fh‘o(")=“—,*,‘—::J \_*r ritlr)dry. b<r< x. (55)
ry rT—b°J (r"=r3)

and the argument r, in the terms t,(r.ry). t.,(r.ry). t.(r.r,) and t.,(r. r,) may be dropped.

As a numerical example linear shear loading is considered since this case has been
previously examined and hence allows the accuracy of the present method to be evaluated.
The distributed shear loading takes the form t(r) = t,(r #) where 1, is a constant. Since the
solution applies to both radial and tangential shear, the stress intensity factors A}, and Ky,
are equal and are given as

CRe] e

. = hm _"2u—rir.(r 5
_I\‘IIIIJ o N (” r} ‘1(')« (:)())

LN
= lim - 2(r—hyu(r). (57)

ok
AT roeht

where 1,0r) and t,(r) are given in cqgns (47) and (38) respectively. The non-dimensionalized
stress intensity factors Ky and Ky (given as K = r‘,\/}‘)lx.') are listed m Table 1 for various /b
ratios. The torsion case was analyzed by Choi and Shield (1982) and the present results ap-
pear o be in very good agreement with theirs although they did not give explicit numerical
values. The numerical results in Table 1 were obtained with 20 terms in cach series which
provided suflicient accuracy.

The integrations involved are of elementary functions and in some cases they may be
analytically evaluated. As an example consider the above case of tincur shear loading. The
integrations in eqns (54) and (55) are evaluated in closed form as

nol . (B =24 R
ey AL ] 8
P T T ( g H (8)

Ty (b a) V//bl;;}z A <7/7 -’ —r“
T, 4(r) = [ +r{ s — = — _Sin — ﬁ) . (39
R R VA U S S Oy S r—d’

Inserting these expressions into eqns (52) and (53) with # = | gives the terms t, (r) and
1, (r) in integral form. These integrals are not evaluated here for arbitrary rbut for r = «
and r = b they can be easily evaluated. This feads to the following two term approximations
to the stress intensity factors

Table §. Non-dimensionalized stress intensity factors for an annular crack in an infinite homogencous body under
lincar shear loading

ah 0.01 0.1 0.2 0.3 0.4 0.5 .6 0.7 0.8 0.9 0.99
I\,, k,,. 0.054 0170 0.235 0279 0308 0322 0323 0309 0274 0209 0.070
R Ky 0424 0424 0423 0418 0410 0395 0373 0339 0290 0215 0070

[Ki‘x K}l":l:r /[;[R‘l'x K’x’n}
Ky K o b K
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—2(2 1 ., 1+
K= T.'o\/E\/é—I\r l—£°—(“ + ﬁ(l —e')ln r:;). (60)

_r __:3:_1 PRI l_+f_ Y _7.2})
6(1 €%) 6(l £”) lnl—s sin” ' (1=2)¢ ), (61)

where ¢ = a/b. The above approximate expressions are exact for ¢ — 0 since the subsequent
interactions vanish in this limit. They provide a very good accuracy out to a value of ¢ = 0.4
where the above equations give values of 0.305 and 0.407 which are within 1% of the
numerical values in Table 1 which are 0.308 and 0.410.

The limit a/b — | corresponds to a two-dimensional crack of length (b—a) under
uniform in-plane or anti-plane shear of magnitude r,,. The stress intensity factors for this
limit become

K* = K" = 1,/ (b—=a)[2 = 10/ /0.5(1 —a/b). (62)

which gives a value of 0.0707 for a/h = 0.99 which also agrees very well with the numerical
result.

Now the annular crack in an inhomogencous material under normal loading is analyzed
(Fig. 2). The inhomogencous material (—oo < = < o0) has a power law variation in the
modulus given as E = Ey|z|* (£, = constant, 0 € o < 1) and the annular crack is located
on the z = 0 plance. The integral equations are again given by eqns (9) and (10) where
H(Q,.Q}) is given in eqn (24) apart from a constant multiplicr. The fundamental solutions
are given in eqns (33) and (34). From these one may identify

P | o fma
.“—/.;,=7;:'(.Ob 2 R (63)
AR R {
@ yo, ,0 =\ 3 3 [y s
Ju(r,0,ry,0,) (u'—-r') T e cos (0=0) O<r<a, a<ry,<oo,
(64)
) b —p2\ -2 |
9()9 ,0 = 9 b B 3 N
Jo(r,0,r0,04) (r‘—b‘) P2 cos (0=00) b<r<owm, 0<r,<b.
(65)

The series solutions are given in eqns (15) and (16) with

» , 1 LCAN S
M= = mcos{ 5[ n> 0, (66)

Guo(r.0,r0.00) = f,(r.0,ry,05), O0<r<a, a<ry<bh, (67)

Uh.o("vo»’o- 00) =/;,(f,0,r0,00), b <r< @0, a< To < b. (68)

2 T () o * - ) e - « . .0)
Oan(r.0,rq,00) = (a*=r?) -0 ”/-J' f 2 _gryt-nz T 1(p.&.ro. 0,
0-Vo ( ) . (p~—a) I"+p“—2rpcos(([)—0)pdpd¢‘

O<r<a, a<ry<bh n=1, (69)
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P e Slpadry 8y)
Grn(rblry ) = (F = b~ *hf f b pytns o Jen (P90l
n o Jo ( P7) r'+p‘—2rpcos(d>—())pdpd¢’

b<r<x, a<ry<b, nzl. (70)

The above solution is for concentrated loading at the point (r.6,). A distributed loading
on the crack face can be obtained by integration. The pressure analyzed here is of the form

plr.0) =c,Q(r)cos(mb), a<r<b, 0<8<2n (70

where 0, is a constant, Q(r) is the axisymmetric part of the load and m is zero or a
posttive integer. Replacing P by a,0(r,) cos (m8,)r,dr,d8, and integratingona < r, < b,
0 < 8, < 2rn gives the solution

a,(r.0) =i, cos(m0) Y (=1)'ido,.(r). O<r<a, (72)
n=1{

au(r.0) = iycos (ml) Y (=)Ao, (r). b<r< o, 73
n=f)

where 4, 4y, 4 and 4, are as above with g,,,(r) and 6,,(r) now given by

] 2ra,r" PrE gty )
O,0lr) = (@ —rpyt | Tl Q(ro)dr,, 0<r<a, (74)
. R 2 R A (R ) A T
(}';.,n(l} = (r.' __bl)(l X)) “ I':—-r(; o Q(l’o)dr"‘ h<r< o, (75)
2nr" pteat)yt lpl m
U"-"(r) - (UVi ;I'E)(I ,’”'7: I >'p3 _;.2 T Oy -y (/’) dﬂ, O<r <d, n= I, (76)
27”. m u(h.’_p:)tl 1} _p(;,,,
Gulr) = (ri—pPyt o] e ;;)2 G, A (P)dp, b<r<w, nxi. (77

It is evident from the above solution that the stress field does not exhibit a square root
stngularity at the crack front as in homogeneous materials. Therefore numerical results are
given for the stress intensity factors defined as

K{ = lim 2@a-n]" " a,(0). (78)
K{ = lim 2(r=5)]"" " 2g,(r. 0). (79)
reh?*

In the limit 2 = 0, the results for a homogeneous material are obtained and the stress ficld
becomes squarce root singular at the crack front. Note that for general values of x, the
singularity is between zero and one-half, less than for a homogeneous material.

Two different loading conditions were used for the numerical solution. The first case
corresponds to uniform internal pressure of magnitude o, and can be obtained by taking
m =0 and Q(r) = |. Temporarily concentrating attention on the homogencous case

% = 0. the non-dimensionalized stress intensity factors Ky and K arc defined as K, =
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asb' 2K, The first four columns of Table 2 compare the present numerical solution with
that of Clements and Ang (1988). They displayed that their results were in excellent agree-
ment with those of Nied (1981) for a/b > 0.10 while their results also agreed with the
asymptotic series solution given by Selvadurai and Singh (1985) for small a/b. Hence the
results of Clements and Ang are taken for comparison purposes. From Table 2 it can be
seen that the present numerical results are in excellent agreement with those of Clements
and Ang over the entire range 0 < a/b < 1. These results were obtained by taking 20
terms in each series.

The terms of the series are given in eqns (74)-(77) and for uniform loading some of
these integrals may be analytically evaluated. A very accurate approximate expression for
the stress intensity factors of a uniformly loaded annular crack in a homogeneous material
can be obtained as follows. Substituting m = 0. x = 0 and Q{ry) = | into eqns (74) and
(75). the integrals can be evaluated analytically giving

(2 /b*—a* « ,“l(b:-i-rz—?.a:)_ (80)

0,.0(r) = n0o| — === — 5 —sin s
L Ja* =7 2 b*—r
(2. /b —a®> n b —a*—r?Y]|

o,,‘(,(r) = Ty —‘;”___ZT - 5 —-sm"“' R S . (8‘)
L Jri—b rr—a ~

Inserting the above expressions into eqns (76) and (77) with # = [ gives the terms a,,,(r)
and g, (r) in integral form. These integrals can be evaluated for r =aqand r = b as in the
previous case of shear loading leading to the following two term approximations to the
stress intensity factors

Ki =:la(,\/:1,/e:"2—-l, (82)

4 —
Kﬁ’=;{~260\/f;tan“(,/£"3-—i), (83)

where £ = a/b. The above expressions are accurate for small ¢. For small ¢ the stress intensity
factors behave as K = 460\/19/(7!2\/;:) and K! = 200\/1;/71 which agree with the first term
of the asymptotic series derived by Selvadurai and Singh (1985). Adding additional terms
to eqns (82) and (83) leads to the following approximate expressions:

Table 2. Comparison of stress intensity factors for a uniformly loaded annular crack in an infinite
homogencous materiul with previous results und approximate expressions

Approximute

Clements and Ang expressions

alh K £ K ] 4 K £

0.01 4.090 0.634 4.069 0.634 4.067 0.634
0.1 1.323 0.610 1.323 0.610 1.318 0.609
0.2 0.950 0.581 0.950 0.581 0.945 0.580
0.3 0.775 0.548 0.775 0.548 0.771 0.549
04 0.659 0.513 0.659 0.513 0.657 0.514
0.5 0.568 0.473 0.569 0.473 0.567 0.474
0.6 0.488 0.427 0.488 0.428 0.488 0.430
0.7 0410 0.374 0410 0.374 0411 0.377
08 0.327 0.309 0.327 0.309 0.328 0.311
0.9 0.227 0.221 0.227 0.221 0.229 0.223

0.99 0.071 0.07t 0.071 0.07t 0.072 0.071
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e 4 P 3 i )
K= 0/ b\is(\:’s R }:{6%'\/ 1 ——z). (84)
K"z—iao /bl tan~" ( ';T:T)“‘}E":E fl—e (85)
oY M I [ R '

The additional terms were deduced by comparing with the numerical data. Tabl 2 also
gives the numerical results from the approximate expressions above. The maximum error
0f 0.5% occurs in K at a value of a/b = 0.2. The approximate expressions provide a simple
means of obtaining very accurate values with little computational effort.

Now consider the inhomogeneous case for uniform pressure and general values of x.
The non-dimensionalized stress intensity factors K¢ and K7 are defined as K| = g,6'' "* K,
and they are given in Table 3 for various values of the ratio a'd and the parameter z. Table
3a) gives theresultsfor0 € x < Tand 0 <« b < 0.5 while Table 3(h) isfor0 < x < l and
0.5<ab< 1.

First values of the stress intensity factor at the inner radius are examined. Table 3(1)
gives the stress intensity factor K{ (0 < «'h < 0.5) and for a given value of a/b it generally
increases with x to @ maximum and then decreases to a limiting value of approximately 1.0
for « — 1. The behavior for a/b = 0.01 ts strictly decreasing since the peak value in this case
occurs at x = 0. The {ocation of the peak shifts as the ratio ¢fb is increased. As a/b increases,
the peak occurs at increasing values of 2. For a b = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5 the peak is
located at 2 = 0.0, 0.3, 0.5, 0.7, 0.8, 0.9 respectively. The magnitude of this maximum value
decreases with inercasing a/b. From Table 3(b) it is evident that no peak occurs in this range
of a/b. In this region (0.6 < a/h < 1.0} the values increase monotonically from a minimum
at 2 = 0 to approximately 1.0 at x = 1.0

Attention is now focused on the variation of K with «/b tor a fixed value of x. In this
case the stress intensitly factor deereases uniformly as a b is increased. As a/b — 0, the values
of K¢ becomes infinite but the strength ol the singularity decreases as ¥ is increased. On the
other hand, as a/b — 1 K¢ tends to zero as indicated in the numerical results and eqn (86)
below.,

Table 3(a). Non-dimensionalized stress intensity fuctors for a uniformly loaded
annular crack in an inhomogencous material, U € x < L0 < ab £ 0.5

ajb 0.01 0.1 0.2 0.3 0.4 15
1=0 H 4,090 1.323 0.950 0.775 0.659 0.568
; 0.634 0.610 0.580 0.548 0.512 0.473
x=0.1 y 1,903 1.406 1.036 .858 0.739 0.645
? 0.697 0.676 0.648 0.617 0.581 0.541
x =02 | 3.633 1.457 1.106 0.931 0.813 0.718
B 0.756 0.738 0.713 0.684 0.649 0.610
2=03 H 3.305 1481 1.159 0.994 0.881 0.788
4 0.809 0.796 0.774 0.747 0.7t5 0.677
=04 H 2.945 1.476 1.193 1.045 0.940 0.853
¢ 0.85% 0.848 0.829 0.806 0.777 0.742
x =05 H 2572 1445 1.209 1.080 0.988 0.910
; 0.500 0.892 0.878 11.859 0834 0.804
1 =06 H 2.206 1.390 1.203 1099 1022 0.957
? 0935 0.930 0.920 0.905 0885 0.860
x =07 H 1.858 1313 1.179 1.101 1.042 0.992
h 0.963 .960 0.953 0.942 0.928 0.909
2=038 : 1.538 1.221 1,135 {.085 1.045 1.011
: 0.984 0.982 0.978 0.971 0.961 0.949
1=09 ? 1,253 1.1t6 1.076 1.051 1.032 1.015
P 0.996 0.995 0.993 0.990 0.986 0.980
x =099 Ky 1.027 1.01s Lot 1009 1007 1.005
H 1.000 1.000 1.000 1.000 .999 0.999
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Table 3(b). Non-dimensionalized stress intensity factors for a uniformly
loaded annular crack in an inhomogeneous material. 0 €2 <1,

05<ab< 10
ab 0.6 0.7 0.8 0.9 0.99
x=0 K¢ 0.490 0.411 0.327 0.227 0.071
b 0.427 0.374 0.309 0.221 0.071
x=01 K¢ 0.560 0.478 0.389 0.280 0.098
Ki 0.495 0.439 0.379 0.274 0.098
1=02 K¢ 0.632 0.548 0.456 0.340 0.134
b 0.563 0.507 0.435 0.333 0.134
x=0.3 ¢ 0.704 0.620 0.527 0.407 0.180
» 0.632 0.577 0.505 0.400 0.180
=04 ¢ 0.773 0.693 0.602 0.482 0.239
K 0.701 0.648 0.579 0.474 0.239
2=0.5 ¢ 0.838 0.764 0.679 0.564 0.314

K 0.767 0.719 0.655 0.554 0.313

12=006 T 0.895 0.830 0.755 0.650 0.406
' 0.828 0.788 0.731 0.640 0.405

2=0.7 i 0.942 0.890 0.828 0.740 0.519

T 0.885 0.852 0.806 0.730 0518
2=08 T 0977 0.940 0.896 0.831 0.655
H 0.932 0.910 0.878 0.822 0.653
x2=09 v 0.998 0.979 0.955 0.919 0815
t 0.972 0.960 0.943 0913 0813
x2=099 KA} 1.003 1.001 0.998 0.994 0.982
' 0.998 0.997 0.995 0.992 0.980

Kl po-ny &
(k] e { &

Examining the stress intensity factor K at the outer radius, a strictly monotonic
behavior is observed for a fixed a/b ratio. This stress intensity factor increascs from a
minimum at = 0 to a maximum of ncar 1.0 at « = 1.0. This behavior holds for all values
of a/b. For a fixed value of 2, K} decreases as a/b is increased and tends to zero for a/b —
I as cqn (86) below shows.

The results in Table 3¢a, b) for a uniformly loaded annular crack in an inhomogeneous
material appear to be new. The results can be partially checked by verifying some limiting
cases. The results for 2 = 0 represent a homogeneous material and this limiting case has
been discussed previously. The limit a/b — | corresponds to the two-dimensional problem
of a crack with a length of (—a) in an inhomogeneous material under a uniform pressure
6, The stress intensity factor for this problem has been given by Sih and Chen (1981) as

(l —a/b)‘ 1-2)/2
a 1+a\
‘“( - i>r<7>

where [ is the gamma function. For a/b = 0.99, the present numerical results in Table 3(b)
are in excellent agreement with the above formula. For a/b — 0, the stress intensity factor
at the outer radius approaches that for a uniformly loaded penny-shaped crack. This limit
is given in Kassir and Sih (1975, pp. 382-392) as

Ki = Kt = aoh!! 3 /n(htt =27 (86)

2 f140 4 1
b (1=2)2
K| = Uob -~ COS (‘—‘2 >(l a). (87)

The results for K} in Table 3(a) for a/b = 0.01 are also in excellent agreement with the
above expression.

The second loading condition corresponds to bending and is obtained by taking m = 1
and Q(r) = r/b. The non-dimensionalized stress intensity factors K7 and K? are now defined
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as Ry = g,cos (0)b"' ~* *K,. Numerical results are given in Table 4(a) for 0 < x < | and
O0<ab<0S5whileTabled(b)isfor0<x<land035<ub < 1.0.

Again considering K7 first in Table 4(a). the variation with x for a fixed a b is observed
to be analogous with the previous case. A peak occurs in the stress intensity factor as z is
increased from zero to one. Contrary to the previous case. this peak value now increases
with increasing «/b. From Table 4(b) the behavior in this range of «’b is similar to the

previous loading.

Table 4(a). Non-dimensionalized stress intensity factors for an annular crack in

ZroU YONG and M. T. Ha~NsoN

an inhomogeneous matenal under bending. 0 < x < 1L 0 <a'h 0.5

ah 0.01 0.t 0.2 0.3 0.4 0.5
x=0 K 0.054 0.170 0.236 0.280 0.309 0.324
Ky 0424 0.423 0.422 0.418 0.410 0.395
x=01 K 0.048 0.172 0.247 0.301 0.338 0.360
Kl 0.482 0.482 0.480 0.476 0.468 0.454
1=02 K 0.043 0.171 0.255 0.317 0.363 0.395
Ky 0.541 0.541 0.539 0.536 0.529 0.516
x=03 K} 0.037 0.167 0.259 0.330 0.385 0.426
Ky 0.600 0.600 0.599 0.596 0.590 0.579
1=04 K 0.032 0.161 0.259 0.338 0.402 0.453
K} 0.660 0.660 0.659 0.657 0.652 0.642
x =05 Ky 0.027 0.153 0.256 0.342 0.415 0.476
Ky 0.720 0.720 0.720 0718 0.714 0.706
x =06 K 0.022 0.144 0.250 0.341 0422 0,493
Kt 0.780 0,780 0.779 0.77% 0.775 0.769
v =07 K}‘ (1.019 0.134 0.240 .337 1.4258 0.504
Kt 0.838 0838 0837 01837 0.835 0.830
1 =08 Ky 0.013 0.123 0.229 0.32% 0,422 0.510
K 0.894 0.894 0.894 0.893 0.892 0(.8%9
PR 0.012 0.111 0.215 0.316 0414 0.508
Ky 0.949 0.949 0.948 0.948 0.94% 0.946
x =099 K 0.010 0.101 0.202 0.302 0.402 0.502
Kt 0.995 0.995 0.995 0.995 0.995 0.998
K | &y
ca cosfbtt v
[,A’z- \ " { m]

Table 4(b). Non-dimensionalized stress intensity factors for an annular
crack in an inhomogencous material under bending, 0 €2 < 1,
0S5 <abh< 10

alh 0.6 0.7 0.8 0.9 0.99
=0 Ry 0.325 0.311 0.27% 0.212 0.07t
Ky 0.372 0.339 0.290 0.214 0.070
x =01 K 0.36% 0.359 0.328 0.260 0.09%
o 0.432 0.398 0.347 0.265 0.097
x=02 K} 0.411 0.409 0.382 0.315 0.133
. 0.493 0.462 0.410 0.323 0.133
=03 Ki 0.451 0.45% 0.439 0.376 0179
Ky 0.559 0.527 0.477 0.389 0.179
x =04 K} 0.489 0.506 0.497 0.442 0.238
» 0.625 0.596 0.549 0.462 0.238
x =05 K3 0.522 0.552 0.556 0.515 0.311
" 0.091 0.666 0.623 0.541 0.312
x = 0.6 ; 0.551 0.594 0.614 0.591 0.403
’ 0.757 0.736 0.700 0.627 0.404
x = 0.7 ; 0.574 0.631 0.670 0.67! 0514
y 0.821 0.806 0.777 0.717 0.517
x=0% K 0.591 0.662 0.720 0.750 0.649
" 0.884 0.874 0.854 0811 0.652
1 =09 H 0.599 0.686 0.765 0.828 0.807
Kr 0.944 0.939 0.929 0.906 0.813
x =099 Ky 0.602 0.701 0.798 0.893 0.973
, 0.994 0.994 0.993 0991 0.980
il . R;,
[:;] = a,cosht " [K;]
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Focusing on the variation of K¢ with g/b for a fixed value of z it is apparent that a
peak also exists in this direction. The values of K{ tend to zero for a/b— 0 and a/b ~ |
while attaining an intermediate maximum value.

The stress intensity factor K7 exhibits the same variation with 2 as the uniform loading
case. That is. for all values of a/b it has a monotonic increase from a minimum value at
2 = 0 to a maximum of approximately 1.0 at x = 1.0. On the other hand. for a fixed value
of z it decreases monotonically as a/b is increased.

The numerical results can be partially verified by studying some limiting cases. The
top two rows in Table 4{a, b) correspond to a homogeneous material. This case was analyzed
by Nied and Erdogan (1983). They did not give tabulated numerical results; however the
present numbers agree very well with their figures once the different definition of stress
intensity factor is accounted for. Ia the limit a/b — 1, a two-dimensional plane strain crack
of length (b—a) under uniform loading of magnitude o,cos(f) is obtained. Hence the
numerical results in the last column of Table 4(b) should be very close to the last column
of Table 3(b) (and equivalently eqn (86) with the term cos (#) added to the right hand side).
Comparison of the last column of these two tables for a/b = 0.99 reveals almost identical
numbers. The slight difference results from the cos (8) stress variation which still has a smali
effect for a/b = 0.99. Finally the results for K} as a/b-» 0 may be checked against the
analytical solution for a penny-shaped crack. Using the crack face loading in eqn (71) with
m = } and Q(r) = r/b, the stress intensity factor can be analytically evaluated by integrating
the Green's function in eqn (34) giving

2 o I i
* o s (MH -2 7 el 10 S A e
K{ = oycos (b gcos(z){“_a) {3-—@}}' {&8)

The results for £ in the first column of Table 4(a) for ¢/h = 0.01 agree very well with the
above limiting case.

5. DISCUSSION

This paper has developed a basic solution procedure for certain mixed boundary value
problems in potential theory. The solution here is appropriate for boundary value problems
with annular type circular or non-circular regions, The method converts a pair of coupled
integral equations to two non-coupled equations and writes their sofution in series form.
The terms of the series are evaluated as successive numerical integrations of clementary
functions and hence the method is mathematically simple and tractable. Furthermore, it is
ilustrated that the method can handle certain types of inhomogencous medium as easily
as the homogencous case. As an example, the solution procedure was applied to fracture
mechanics and numerical results were given for a circular annular crack in an inhomo-
geneous material where the modulus varies as a power law from the crack planc = =0
(E = Ey|z|*, Ey = constant, 0 < « < 1). The results were compared to previous calculations
and limiting cases available and the numerical calculations were found to be of very high
accuracy.
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