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Abstract-:\. basic procedure is given t,lr converting a pair of coupit'd tWP-dimensional integral
clju.ltions rdcvantttllllixcd boundary valli<: probkms with annular typc rcgi,'ns tp two non-couplcd
inlcgral cljuations. The pnl\:edurc utiliz~'s fundamenlal soluti,'ns to thc wrres(.','mlmg internal and
extcrnal (.'robkms in order tt' separat~' thc c,'uplcd equati,'nS ami writc thclr Slllutlt.n in series form.
Thc method is !irst applied to axisymmetric shcar I,'ading pf an annular cra,:k in a honlOgcneous
transversely isotropic material (where the crack plane is paralit'l ttl the plane of isotropy) and to
uniform tensik loading "f an annular crad in a IwnHlgenel'us is"twl'ic material. Stress intensity
1;lCtprs are c"lllpared with prcvious analysis to tesl the accul'acv "I' thc s"luti,'n. ~ew resulls f,.r
stress intensity facllll'S are given li.1' lhl' al'hitrary Ollnnal loading "I' an annubr naek in an
inhomllgeneous iSlllwl'ic medium.

I. INTIH lDt J( 'TION

Many problems in solid mechanks, fluid mcchanics. electromagnetics, etc.. an.: all mathe­
matically descrihed hy identical equations ami fall into the catcgory of potential theory.
After the unitil;d governing equations have heen estahlished and Ilh.:ir general solutions
found, a large class of prohlems can he solved through the same approach. This not only
simplifies the solution procedurcs for various problems but also helps in understanding the
relations between ditli.:rent physical phenomena. This paper develops a simple solution
procedure appropriate to a class or annular type planar mi.\l:d houlldary value prohlerns
in potential theory. Prohlems or lhis nalure can he descrihed hy a pair of coupled two­
dimensional integral equations. llerc a simple Illl:thod utilizing the fundamental solutions
for the individual interior and exterior problems is tkvdopl:d to ulH:oupk the equations
and write the solution in seril:s form.

Before the melhod can he applied to various prohkms, Greell's functions for the
individual interior and exterior regions must he known. Although the method used here
applies to annular type regions with non-circular houndaril:s and finite bodies, attention
will be focused on circular boundaries and infinite hodil:s since the (irl:en's functions for
the interior and extl:rior domains havl: dosed form analytical expressillllS. llence this paper
applies the ml:thod to analyze thl: circular annular crack in an infinite mcdium.

The interior and exterior fundamcntal solutions for circular cracks have generally bcen
obtained separately, applying the samc mathematical method in each case (e.g. Sneddon
and Lowengrub (1969); Chcrepanov (1979); Kassir and Sih (1975): {juidera and Lardner
(1975); Stallyhrass (19Hl): Fahrikant (19H9)1. In many circumstances, the two solutions
can be directly related through elementary algehraic manipulations. This is illustrated for
a circular crack under symme:tric tl.:nsile eoneentratcd loading in an infinite inhomogeneous
isotropic material and for axisymmdric shear loading of an infinite hOlllogcneous trans­
versely isotropic matl:rial when the crack plalll: is parallel to the plane of isotropy. These
two cascs arc chosen since thcy ;Ire nceded in subscquellt analysis for thc annular crack.

The annular crack problelll undcr norlllalloading in an infinilc homogeneous isotropic
material has received considerable attention from previous rcsearchers [e.g. Smetanin
(1968): Moss and Kobayashi (1971): Mastrojannis and Kerlnanidis (IWil); Choi and
Shield (1982): Mastrojannis (19HJ): Selvadurai and Singh (19X5): Ckments and Ang
(1988)]. The annular crack in a thil:k walled cylinder under normal loading was analyzed

t Visiting scholar. Department "fMathelllatics and M.:ch;lllics. Chin" l'niver'll' "I' ~Illling and T.:chnolol!v.
Xuzhnu. Jiangsu. ~~ IOOS. P. R.C. . , "
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by Nied and Erdogan (1983). Axisymmetric torsion of an annular cr~lck in an infinite
isotropic material was also studied by Choi and Shield (1982). In this paper the method
which is developed is first tested against several of these previous solutions to illustrate the
accuracy of the calculations. The method is then used. with no additional difficulty. to
analyze the annular crack in an isotropic inhomogeneous material whose elastic modulus
varies as a power function of depth under conditions of arbitrary normal loading.

2. FOR\\ULATlO:-J

In this section the appropriate integral equations are given and a general form of the
solution is obtained. Although subsequent attention will focus on the circular annular crack
in an infinite body. the form and solution of the integral equations have a more general
application to annular type planar cracks with non-circular boundaries in a finite body. In
deriving the integral equations for non-circular annular type cracks. the symbol a with
attached superscripts and subscripts represents a planar area. The plane containing the
crack is denoted by ar which is divided into the four subsets a". a:~. an and a~. If 0
denotes the empty set. the following relations are assumed to hold between the four subsets
as illustrated in Fig. I (a-e)

a" na;; = 0. a" ua;~ = ap • (I)

anna~ = 0. abUa~ = ap • m

a" nalo = 0. a;; n a~ = n~. 0)

n~ ualo = a;;. a" un~ = a~;. (4)

Fig. I (a). The regions n" and n;;.

Fig. I (h). The regions n, and n~,.

Fig. 1(e). The regions n". n. and no..
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For the special case of a circular geometry to be considered in detail later. n Q is a circular
area of radius r =a. nt, is a circular area of radius r = b. b > a. and n: is the annular
region a < r < h.

Deriving the integral equations for the annular type crack utilizes the solution of two
fundamental integral equations for the regions n" and n". These integral equations take
the form

[ H(n".Q)()~(n.n~)dn = PbH(n".n~).
... n...

(5)

(6)

where the kernel H is a known function. Pa and P" are constants and u:. ug are the
fundamental solutions of the integral equations. For compactness the following notation
has been employed. Considering a polar coordinate system centered in n a• the notation
H(n".n;;> is equivalent to H(r. 0. ro. On) ; r. 0 E n Q • roo 00 E n~. Physically speaking. in terms
of fracture mechanics applications. eqn (5) can be interpreted as an integral equation for
the normal stress u,~ in the bond ligament n a of an external crack in an infinite medium
loaded by equal and opposite point normal forces Pa at a point on the external crack faces
in n;;. [n this interpretation. H(n". n;:> is the normal displacement on the surface of a half
space at a point in ncr caused by a unit normal force at a point in 0.;;. Equation (6) then
corresponds to an internal crack over the are.1 nt,.

The solutions to the integral equations <Ire assumed to exist in the forms:

(7)

(8)

where.l:, and j~ arc known functions in 0." and n b respectively, and i,,, and i'b are two real
constants satisfying i." < I and i'b < I.

Now consider the following pair of coupled integral equations for the unknown
functions (1" and (1,,:

Irthe solutions in eqns (7) and (8) arc known. then the coupled equations (9) and (10) can
be transformed to the following uncoupled equations:

(1"(0.,,.0.;') = i."p(!.,(nCl.n~)-i'b L. JAn". n)j;,(n,n:)dO.)

+i.ai.!> r };,(na.n) r h(n,n')IT,,(n',n~) dn' dO., (II)
JOh lOa

IT.(Qb. n ;,) = i.!> p(f" (0.". 0.;') - i'a 1. f"(n,,. Q)!.,(n, 0.:) dO.)

+;.").,, r ji,(n".n) r !.,(n,n')IT,,(n'.n:)dn'dn. (12)In,, JOlt

SAS 29:8-H
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To obtain the uncoupled equations given above, the following procedure may be
followed. Temporarily treating (J" as a known quantity in eqn (9) and moving it to the right
hand side. (Ju can be written using eqn (7) as

(JAnu.n,~) = ;."pfu(n".n;')-i." I fJ(nu.n)(J,,(n.n~)dn.
Ju~

(\3)

Similarly. treating (J,/ as a known quantity in eqn (10). (J" can be given by the superposition

a"(n,,.n;,) = }."P/~(n".n,~)-i." I j~(n",ma,,(Q.n;')dn.In., ( 14)

where eqn (8) has been used. It is easily verified that eqns (13) and (P) automatically
satisfy the coupled eqns (9) and (10). Substituting eqn (14) into eqn (13) leads directly to
eqn (II) while substituting eqn (13) into eqn (14) gives eqn (12).

Equations (II) and (12) are Fredholm integral equations of the second kind. General
solutions to these equations are given in Neumann series form as:

11,/(n".n;,) = }."P L (-I)"i.~I1".n(n".n;,),
" II

IT,,(n,.. n::) = i.J' L (- I )" i.~IT""(n,,, n,~).
n,- II

The terms in each series arc given hy the recursion relations

IT,/,,(n'l'n::) = Il/(n,/.n)IT/,." dn,n::)dn, ,,~I,
J!}"

and

i.:: = .."
" :?: I.1."1.,, I,

." = •• ,J

" :?: I.I." I'<JI." I·

( 15)

( 16)

( 17)

(I R)

( 19)

(20)

(21 )

(22)

(23)

The series solution in eqns (15) and (16) is essentially a reflection method or an iterative
solution to eqns (13) and (14) [and hence eqns (II) and (12)]. Discussions on convergence
of such series solutions ean be found in many references on integral equations [see for
example Tricomi (1985)] and will not be examined here. Subsequent numerical calculations
verify a fast convergence with relatively high accuracy.

The above derivations can be carried out without any reference to a physical back-
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ground or application of the coupled integral equations (9) and (10). Therefore the solutions
in eqns (15) and (16) are of general mathematical significance for various types of problems
in potential theory. This solution procedure is certainly not new to potential theory or
fracture mechanics. however the applications considered presently do not seem to have
been previously analyzed.

It is important to note that the above solution is applicable to annular type regions
with boundaries ofarbitrary shape (not necessarily circular) and hence is a general solution.
For the solution of a particular problem. the main requirement is knowledge of the
fundamental solutions of eqns (5) and (6). For fracture mechanics applications, these
fundamental solutions correspond to point force loading of the crack faces.

3. SOLUTION TRANSFORM ATIO"S

As mentioned in the previous section. knowledge of the individual fundamental solu­
tions is required in order to solve the coupled problem. These solutions have been given as
analytical expressions only for the case of circular geometries in the past and present
literature. Although an analytical form to the solutions is not a requirement, present
considerations will be limited to a circular geometry.

Knowledge of both (internal and external) fundamental solutions for a circle is necess­
ary. In some cases. such as the circular internal and external crack in an infinite medium,
both fundamental solutions have been previously obtained by methods of potential theory
[e.g. Sneddon and Lowengrub (1969) : Kassir and Sih (1975) : Fabrikant (1989)]. In these
cases. the investigators have used the same mathematical method to obtain both solutions
imh:rendently. On the other hand. in some cascs only one of the fundamental solutions
may be known. Ilcre a simple method is used illustrating the relationship between the
fundamental solutions for a circle which can be used to obtain one from knowledge of the
other without solving a similar boundary value problem.

As an example. consider an infinite inhomogeneous medium with the clastic modulus
E = Eol=I' (Eo = constant. 0 ~ IX < I) containing a circular crack (internal or external) of
radius r = (/ located on the plane == O. A polar coordinate system (r, 0) is taken at the
crack center. The crack is opened by a pair of concentrated normal forees ± P at the point
(ro•Do. 0) applied to the upper and lower erack 1~lces. Symmetry allows the reduction to a
half space problem with no surface shear stresses. The normal surface displacement (apart
from a constant multiplier) of an inhomogeneous half space caused by a unit point normal
force has been found previously by Rostovtesv and Khranevskaia (1971) as

The two fundamental integral equations (5) and (6) can be written as:

(a) for a penny-shaped crack of radius h

h < r < 00, 0 ~ 0 ~ 2n:, 0 < ro < h, 0 ~ 00 ~ 2n:;

(b) for a circular external crack of radius a

(24)

(25)

+e5 +yr cos () +{lr sin (),

O<r<a, O~O~2n:. a<ro<oc, O~()0~2n:. (26)
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The additional terms J. i' and f3 in eqn (26) are constants which are related to rigid body
displacements at infinity which may arise in external crack problems [e.g. Stallybrass ( 198\ ) :
Fabrikant et al. (1986); Gao and Rice (\987)]. For solving annular type internal cracks.
the case b = i' = {J = 0 is appropriate which implies the vanishing of all displacements at
infinity.

The similarity of the two integral equations is apparent and in fact both can be put
into the same form. To illustrate this. substitute

h h h
x = r = -- rn =

p , '0
(27)

into eqn (25) resulting in

where

-o( .1.. - 0) _ o(h I.. h I}) .. ~~-~(,+ I)h"a" .\. (I" '0' n - a" ,(v' '~~', n·\'n .
X 'n

(28)

(29)

Similarly suostituting

into eqn (26) gives

. - P
.\ - ,

II

,
r=

II
(0)

(31)

Equations (28) and (31) have identical forms and hence identical solutions. Having
one solution allows the other to be automatically obtained by the relation

o I.. ) o(lIh ,I.. IIh I) ) ~h~'( I +.) ~ .1+,ad ( p. (v. , o. I II) = a" ~~- , '1" ~'-, II II foP .
P f o

The solutions for both cases have been given recently by Fabrikant (\989) as:

0< p < II, a < fn < X.

h < P < 00, 0 < 'n < h.

(2)

(33)

(34)

It is easy to verify that eqns (33) and (34) satisfy the relation (32). In the case of a
homogeneous material. Cl = 0 and the relation also holds. The same is true for a circular
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crack in a transversely isotropic material if the crack plane is parallel to the plane of isotropy
since in this case the nonnal stress on the crack plane is identical to the isotropic result
(Kassir and Sih. 1975; Fabrikant. 1989). It is important to note that eqn (32) holds only
in the case of vanishing displacements and rotations at infinity for the external crack
solution. Vanishing of the net force or moment will introduce additional tenns in the stress
distribution for the external crack.

As a second example consider the case of shear loading. At the present time the
fundamental solution for point shear loading of neither an internal nor an external crack
in an inhomogeneous material appears to be available. Therefore, attention is directed to
an infinite transversely isotropic material where the crack plane is parallel to the plane of
isotropy. For this case antisymmetry conditions allow the reduction to an equivalent
problem for a half space: > O. Taking a polar coordinate system r. eon the surface: = O.
the tangential surface displacements II, and 110 at the point (r. e) caused by point shear forces
T, and To applied at the point (ro. eo) in the rand e directions respectively. can be found
from Fabrikant (1989) as

(35)

where i is the complex number, R Z = r Z+ r~ - 2rrocos (0 - ( 0 ) and G I and GZ are material
constants. The internal fundamental solutions for point shear loading inside a penny-shaped
<:rack can also be found there. The shear stresses at a point (r,O) on the crack plane outside
the crack arc given by

. _ Ji)l=-r~ (T,+iT,,)e .(0 0,,) + GZ (I' '1') .•(0

!,,+I!·o - J R' G·'I" ,-I 0 e
" n! r!-h! -

h < r < ifJ, 0 < '0 < h,

(3r - r e'(O 0,.,.1»)
11 0 ) --"-- . . .

r[r-ruc IIO lIulJ~ ..

(36)

where the point forces of magnitudes T, and To. pointing in the radial and tangential
directions respectively. arc applied at the point (ro,Oo) inside the crack of radius b.

Equation (36) displays the coupling between the radial and tangential stress
components. The previous solution procedure is developed for one unknown function inside
and outide the annular region (as in normal loading) and hence cannot be applied directly
to general shear loading. The extension to this case will not be taken up here. Instead
axisymmetric shear is considered which eliminates the coupling effect. Integrating eqn (36)
gives the axisymmetric shear stresses

2 ~r5 I
!:,(r. (0) = - T, ~ - -,--"

n ..;rz_bz r r--rii
b < r < 00, 0 < '0 < b,

b < , < 00, 0 < '0 < h,

(37)

(38)

where T, and To are now ring loadings pointing in the rand (} directions applied to the
penny-shaped crack at a nldial distance of roo The stress distributions in the above equations
are identical and independent of material constants, thus being equal to the isotropic results
which has been pointed out previously by Kassir and Sih (1975).

The external solutions for ring loadings of an external circular crack are also needed.
These can be obtained by extending results currently available in the literature but here it
is illustrated how they can be easily obtained from eqns (37) and (38) with the aid of
only algebraic manipulations. The procedure is analogous to the previous example for an
inhomogeneous material. The tangential displacements on the surface of a transversely
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isotropic half space under axisymmetric shear loading can be evaluated by integrating eqn
(35) giving

o< r. rl) < x. (39)

o< r. r u < x. (40)

where again T, and T" are ring loadings at a radial distance of rl). The appearance of the
material constants only in the form of constant multipliers explains the independen<:e of
the surface stresses from the e1asti<: constants. The above displa<:ements <:an be used to
formulate the axisymmetric integral equations for the internal and external <:racks. and
using the previous transformations they <:an be put into identi<:al forms. The resulting
stresses for an external crack of radius a can be deduced as

"l /. : :- V rl) -a r
!.,,(r.ru) = . T" , ,. 0 < r < a. a < r" <x:c.

. It /a' -r: ri;-"

"

(41 )

(42)

It is important to point out that the anoV(; procedure is not necessarily new but it is one
that is seldom if ever applied in the literature. It provides a simple means of checking
solutions presently available if both the internal and external problems have been solved.
If only one is known, it allows the other to he easily ohtained.

-1. APPLICATIONS

In this section the previous results are used to analyze two dill'erent problems. In both
cases a circular geometry is used. The region n" is interior to a circle of radius a while H"
is exterior to a circle of radius h. The cracked region n;; is thus the annulus a < r < h (Fig.
2). The annular crack is loc,lted in an infinite body since the corresponding fundamental
solutions arc known for this <:ase.

As a first example axisymmetric shear loading is considered. This solution is somewhat
simpler since there is no angular dependence. As noted earlier, for axisymmetric shear of
an annular <:rack in a transversely isotropi<: material. the solution is identi<:al to the isotropic
case when the crack plane is parallel to the plane of isotropy. The solution is also the same
for radial and tangential shear and hence no subscripts indicating direction need be used.
The axisymmetric version of the integral equations (9) and (10) apply where the function
f[(n<l,n~) is given in eqn (39) for radial shear and eljn (40) for tangt:ntial shear. The

Fig. 2. Annul<lr crack 1'1ad"d ill shear or tension.
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axisymmetric fonn of the solution in Section 2 is given with (J replaced by rand P by T
since the problem is for shear.

The fundamental solutions to the axisymmetric version ofeqns (5) and (6) are obtained

from the previous section as

o 2 ~r~ I
tb(r.rO) = - Tb~ - -,--,. b < r < 00. 0 < ro < b.

It yr2_b2 r r--rij

From eqns (7) and (8) one may identify ;'a = ;'b = 2/lt and

(43)

(44)

o< r < a. a < ro < 00.

h < r < 00. 0 < ro < h.

(45)

(46)

The axisymmetric form of the series solution in eqns (15) and (16) become

1:-~

tAr.ro) = A"T L (-I)";.~t" .• (r.ro). 0 < r < a. a < rn < h. (47)
n .... O

.,
th(r,rO) = AhT L (-I)";.~th.• (r,rO)' h < r < 00, a < r o < h, (48)

n- 0

with

;.: = A~ = (2/lt)". n ~ 0,

j;[_a 2 r
t o(r ro) = ------ -,,-----,., 0 < r < a, a < ro < h.
a.' ~, (r- -r-)y(r-r 0

(49)

(50)

a < ro < h. (51)

(52)

(53)

The above solution in eqns (47) and (48) corresponds to a ring loading of magnitude
T at a radial distance of ro from the center. For a distributed loading r(r) on a < r < h. one
may replace T by t(ro) dro and integrate on a < ro < b. The parameter ro only appears
directly in the initial terms t".o(r, ro) and th.O(r. ro). For a distributed loading those may be
replaced by



0< r < a.

b<r< x.

(54)

(55)

and the argument r o in the terms !a(r. rl). r",,,(r. ro). !,,(f. r o) and r",,(r. ro) may be dropped.
As a numerical example linear shear loading is considered since this case has been

previously examined and hence allov.:s the accuracy of the present method to be evaluated.
The distributed shear lqading takes the form r(r) = ro(r b) where !o is a constant. Since the
solution applies to both radial and tangential shear. the stress intensity factors KII and Kill
are equal and are given as

[ 1\1'1 J ". = 1111 ,:.«(/
l\1'1I ,."

[
A'I> J
(.;,' = lim, , :'(r
1\.111_ r·/I

h)r,,!,.).

(56)

(57)

where !)r) and r,,(r) an: given in eqns (47) and (4!\) respectively. Thc nOll-dimensiollalizcd
stress intensity factors I\ll and I\Ill (given as 1\ = ,,,,/hl\) are listl:d in Tahk: I t'i.lr various lIih
ratios. The torsion case was analyzed hy ('hoi and Shield (19X:') and the prescnt results ;Ip­
pear to he in very gOl)d agreement with theirs although they did not give explicit numerical
v;tlues. The numerical results in Table I were obtained with :'0 terms ill each series which
provided sullieient accuracy.

The integrations involved are of elementary functi()ns and in some cases they may be
analytically evaluated, As an example consider the ahove case of linear shear loading, The
integrations in eqns (54) and (55) are evaluated in e10sed form as

(5X)

[

, , J' {Ih""LI) (h- -(r)- V --(I''h o(r) = _.', - '::- +r,· .C:=::c..

, h / ' /"3"",--h ,,--h-

n:
4

I (2h2
-:-,-,2-:-~)" }J.

r- -(I'
(59)

Inserting these expressions into eqns (52) and (53) with II = I gives the terms r", 1(") and
!h,1 (r) in integral form. These integrals are not evaluated here for arbitrary r but for r = (/
and r = h they can be easily evaluated. This leads to the following two term approximations
to the stress intensity factors

Table I. Non·dimensionaliled stress intensity fa<.:tors for an annular cra..:k in an Illiinitc Ih1l11l)gcneous hody umkr
linear shear loading

ah 0,01 OJ 0,2 0,.1 0,4 0,5 0,6 0,7 O,S Ot) O,lJlJ

hi'" t,,, 0.054 0,170 0,235 0,279 O,30S 0,.122 0,.12.1 fum 0,274 O,20lJ 0,070

h;,. t~" 0.424 0.424 042.1 O.4IS 0.410 O"N5 0.17.1 0,.1.1'1 O,2'1( 0215 0,070

[KI' Kill] _ i[ t'il hi'IIJ
A:~f A'~" - r 0,- ti, h;1l
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(60)

(61)

where e = a/b. The above approximate expressions are exact for e .... 0 since the subsequent
interactions vanish in this limit. They provide a very good accuracy out to a value ofe = 0.4
where the above equations give values of 0.305 and 0.407 which are within 1% of the
numerical values in Table I which are 0.308 and 0.410.

The limit alb .... I corresponds to a two-dimensional crack of length (b-a) under
uniform in-plane or anti-plane shear of magnitude roo The stress intensity factors for this
limit become

K" = K h = ro)(b-a)/2 = r ofi)0.5(I-a/b). (62)

which gives a value of 0.0707 for a/h = 0.99 which also agrees very well with the numerical
result.

Now the annular crack in an inhomogeneous matcrial under normal loading is analyzcd
(Fig. 2). The inhomogeneous material (- 00 < =< 00) has a power law variation in the
modulus given as E = Enl=I' (En = constant. 0 ~ C( < I) and the annular crack is located
on the == 0 plane. The integral equations are again given by eqns (9) and (10) where
11(0". O~) is given in eqn (24) apart from .t constant multiplier. The fundamental solutions
are given in eqns (33) and (34). From these one may identify

(
r~ - a2) I -.)/2

fAr, 0, rn, On) = -,--, " ,
a--r r+rij-2rrocos(0-00)

(63)

o< r < a, a < r o < 00,

(64)

. (b 2 -r~) 1-')/2 I
Jb(r,O,ro,Oo) = -r-b2 2 2 2 (0 0)' h < r < 00, 0 <'0 < b.

r - r + ro - "0 cos - 0

(65)

The series solutions are given in eqns (15) and (16) with

(66)

(67)

(68)

o < , < a. a < '0 < h, n ~ I, (69)
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h<r<x, a<ro<b. n~l. (70)

The above solution is for concentrated loading at the point (ro. ( 0 ), A distributed loading
on the crack face can be obtained by integration. The pressure analyzed here is of the form

p(r, 0) = (ioQ(r) cos (mO). a < r < b. 0 < () < 2n, (71 )

where (io is a constant, Q(r) is the axisymmetric part of the load and m is zero or a
positive integer. Replacing P by (ioQ(ro) cos (mOo)rodrod()f) and integrating on a < r o < b.
o< Oil < 21t gives the solution

"£

(lJr.O) = ;." cos (mO) L (- I)" i.~(i".n(r). 0 < r < a.
1"1=0

(I,,(r.O) = )." cos (mO) L (_I)n).~(i"."(r). b < r < ex.
n,., n

where ;.,/. i.,,, ;.;: and i.:: arc as above with (i","(r) and (i",n(r) now given by

(72)

(73)

o < r < a.

b < r < ·Ye.

(74)

(75)

2ltr'" I' (p~~~~)llll!~pl "'_
(I",,,(r) = ( i . -')11 xJ.~ ~ "h,'" dp)dp, 0 < r < ll, fl ~ I.

(r -r". h II -
(76)

h < r < 00, fl ~ l. (77)

It is cvident from the above solution that the stress field does not exhibit a square root
singularity at the crack front as in homogeneous materials. Therefore numerical results are
given for the strcss intcnsity factors ddined as

K l' = Jim [2(1l- r)lll xl ~(J,,(r, 0).
r .... /1

K~ = lim [2(r-h)1(I-ll~(J,,(r,O),
r. h ~

(7X)

(79)

In the limit =c = O. the results for a homogeneous material are obtained and the stress field
becomes square root singular at the crack front. Note that for general values of :t, the
singularity is between zero and one-half. less than for a homogeneous material.

Two different loading conditions were used for the numerical solution. The first case
corresponds to uniform internal pressure of magnitude (Jo and can be obtained by taking
111 = 0 and Q(r) = I. Temporarily concentrating attention on the homogeneous case
':L = O. the non-dimensionalized stress intensity factors KIt and K7 arc defined as K, =
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<Tob' 1K,. The first four columns of Table 2 compare the present numerical solution with
that of Clements and Ang (1988). They displayed that their results were in ex.cellent agree­
ment with those of Nied (1981) for alb> 0.10 while their results also agreed with the
asymptotic series solution given by Selvadurai and Singh (1985) for small alb. Hence the
results of Clements and Ang are taken for comparison purposes. From Table 2 it can be
seen that the present numerical results are in excellent agreement with those of Clements
and Ang over the entire range 0 < alb < l. These results were obtained by taking :W
terms in each series.

The terms of the series are given in eqns (74)-(77) and for uniform loading some of
these integrals may be analytically evaluated. A very accurate approximate expression for
the stress intensity factors of a uniformly loaded annular crack in a homogeneous material
can be obtained as follows. Substituting m = O. ~ = 0 and Q(ro) = I into eqns (74) and
(75). the integrals can be evaluated analytically giving

[~" (b' , ., ')J2y (J--(r 7t • _I "+r--_o"
<T".o(r) = 7t<To /01_

r
2 - 2-Sin b2_r1 '

"
(80)

(81)

(nserting the above expressions into eqns (76) and (77) with If = I gives the terms O'".I(r)

and <Th.l(r) in integral form. These integrals can be evaluated for r = 0 and r = b as in the
previous casc of shear loading leading to the following two tcrm approximations to the
stress intensity factors

(82)

(83)

where I: = alh. The above expressions arc accurate for small 1:. For small I: the stress intensity
factors behave as Kf = 4<To)h/(1t20) and Kt = 20'oJb/n which agree with the first term
of the asymptotic series derived by Selvadurai and Singh (1985). Adding additional terms
to eqns (82) and (83) leads to the following approximate expressions:

Table 2. Comparison of stress intensity factors for a uniformly loaded annular crack in an infinite
homogeneous material with previous results .lOd approll.imate ell.pressions

Approximate
Clements and Ang expressions

alh Kj Kt Kj Kt Kj Kt

0.0\ 4.090 0.634 4.06,} 0.634 4.067 0.634
0.1 1.323 0.610 \.323 0.610 1.318 0.609
0.2 0.950 0.581 0.950 0.581 0.945 0.5HO
0.3 0.775 0.548 0.775 0.548 0.77\ 0.549
0.4 0.659 0.513 0.659 0.513 0.657 0.514
0.5 0.568 0.473 0.569 0.473 0.561 0.414
0.6 0.488 00421 0.4118 0.428 0.488 0.430
0.7 0.410 0.314 00410 0.374 00411 0.377
0.8 0.327 0.309 0.327 0.309 0.328 0.311
0.9 0.227 0.221 0.221 0.221 0.229 0.223
0.99 0.Q71 0.07\ 0.071 0.071 0.072 0.071
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(84)

(85)

The additional terms were deduced by comparing with the numerical data. Table 2 also
gives the numerical results from the approximate expressions above. The maximum error
of0.5% occurs in Kf at a value ofaib = 0.2. The approximate expressions provide a simple
means of obtaining very accurate values with little computational effort.

Now consider the inhomogeneous case for uniform pressure and general values of :c.
The non-dimensionalized stress intensity factors Kt and K~ are defined as Kl = (Job' I-Xl:Kl

and they are given in Table 3 for various values of the ratio ah and the parameter ::c. Table
3(a) gives the results for 0 ~ ::c < I and 0 < a h ~ 0.5 while Tablt: 3(b) is for 0 ~ ::c < I and
0.5 < ah < t.O.

First values of the stress intensity factor at the inner radius are examined. Tabk: 3(a)
gives the stress intensity factor Kl' (0 < ah ~ 0.5) and for a given value of (lih it generally
increases with ::c to a maximum and then decreases to a limiting value of approximately 1.0
for'J. ..... I. The behavior for a/h = 0.01 is strictly decreasing sincc the peak value in this case
occurs at ::c = O. The location of the peak shifts as the ratio aih is increased. As alh increascs,
the peak occurs at incrcasing values of ':1.. For (I h = n.o 1,0.1, 0.2, 0.3, OA. 0.5 the peak is
located at 'J. = 0.0,0.3,0.5,0.7, O.S, 0.9 respectively. The magnitude of this maximum valuc
decreases with increasing aih. From Tahle 3(h) it is e\ident that no peak occurs in this range
of a/h. In this region (0.6 < (lih < I,(l) the values increasc lllonotonically from a minimum
at :x = 0 to approximately 1.0 at 1 = 1.0.

Attcntion is now focuscd on the variation of K'i with {llh for a fixed valuc of 1. In this
case the strcss intensity factor decreases uniformly as a his increascd. As aih ..... O. the values
of Kl' bel:Omes infinite hut the strength of the singularity decreases as 1 is increased. On the
other hand, as (Jlh ..... I K'i tends to zero as indicated in the nUlllerical results and eqn (1\6)

below.

Table 3(a). ~on·dimensionalizedstress intensity factors for a uniformly loathl
annular crack in an inhomogeneous maleri;l1. 0 ;:;; :x < 1. 0 < a,b ~ 0.5

alb O.ol 0.1 0.2 0.3 0,4 0.5

:x=0 Kr 4.090 1.323 0.950 0.775 0.659 0.568

Kr 0.63-1 0.610 0.580 0.54li 0.512 0.-173
:x = 0.1 Kl 3,903 1.406 1.036 0.858 0.739 0.6-15

K~ 0.697 0.676 0.6-18 0,617 0.581 0.5-11
:x = O.~ Kr 3633 1,457 1.l06 0.931 0.813 0.718

K; 0.756 0.738 0,713 0,6t1-1 0.6-19 0.610
:x = 0.3 Kr 3.305 1.-181 1.159 0.994 O.tlSI 0.788

Ki 0,809 0,796 0.77-1 07-17 0.715 0.677
:x = 0.-1 Kl 2.9-15 1.476 1.193 1045 0.9-10 0.853

Kr 0.858 0.8-18 0.829 0806 0.777 0.7-12

x =0.5 Kl 2.572 1.445 1.209 1.00Hl O.lJ88 0.')10

K; 0.9U() U.89::! O.lI'8 n.8S,) n834 0.804
x = 0.6 Kl 2.206 1.39ll 1.203 l.ll99 1.022 1l.957

K~ 0,935 0.930 0.920 0.905 ll.lI85 0.860

:x =0.7 Kt 1.858 1.313 1.179 1.10 I 1.042 0.992

K; O,1J63 0.960 1l.953 0.9-12 0.92X 0.9n9

:t. '" O.X K: 1.538 1221 1.135 1.085 1.045 1.0t I

Kr 0.984 0.982 0.978 0.971 0.961 0.949

:x = 0.9 KI I.:!53 1.I16 1.076 1.051 I.OJ2 1.015

K; 0.996 0.995 0.993 0,990 0.986 0.980

:x '" 0.99 K, 1.027 1.015 1.0 II 1.009 1.007 1.01lS

K; 1.000 1.000 1000 1.000 0.999 0.999

[KI] = rr h" "{~i']Ki ,J Ki
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Table 3( b). Non-dimensiona1ized stress intensity factors for a uniformly
loaded annular crack in an inhomogeneous material. O:!;;:z < 1,

0.5 < a;b < 1.0

a.b 0.6 0.7 0.8 0.9 0.99

:z=0 AI 0.490 0.411 0.327 0.227 0.071
K~ 0.427 0.374 0.309 0.221 0.071

:z =0.1 AI 0.560 0.478 0.389 0.280 0.098
A~ 0.495 0.439 0.379 0.274 0.098

:z = 0.2 K'I 0.632 0.548 0.456 0.340 0.134
K~ 0.563 0.507 0.435 0.333 0.134

:z = 0.3 AI 0.704 0.620 0.527 0.407 0.180
K~ 0.632 0.577 0.505 0.400 0.180

:z,., 0.4 Kt 0.773 0.693 0.602 OAR2 0.239
K~ 0.701 0.648 0.579 0.474 0.239

:z,., 0.5 Kt 0.838 0.764 0.679 0.564 0.314
K~ 0.767 0.719 0.655 0.554 0.313

:z,., 0.6 AI 0.895 0.830 0.755 0.650 00406
K~ 0.828 0.788 0.731 0.640 0.405

:z,., 0.7 At 0.942 0.890 0.828 0.740 0.519
K~ 0.885 0.852 0.806 0.730 0.518

:z,., 0.8 K, 0.977 0.940 0.896 0.831 0.655
A~ 0.932 0.910 0.878 0.822 0.653

:z,., 0.9 Ki' 0.998 0.979 0.955 0.919 0.815
K~ 0.972 0.960 0.943 0.913 0.813

:z,., 0.99 Ki' 1.003 1.001 0.998 0.994 0.982
K~ 0.9'18 0.997 0.995 0.992 0.980

[ A,'] = h'l-<>:[hi']
K~ "''' h~

Examining the stress intensity factor K~ at the outer radius. a strictly monotonic
behavior is observed for a fixed ai" ratio. This stress intensity factor increases from a
minimum at !X = 0 to a maximum of near 1.0 at :x = 1.0. This behavior holds for all values
of aih. For a fixed value of :x, K~ det:reases as alb is increased and tends to zero for alb-+
I as eqn (86) below shows.

The results in Table 3('1, b) for a uniformly loaded annular crat:k in an inhomogeneous
material appear to be new. The results can be partially checked by verifying some limiting
cases. The results for :x = 0 represent a homogeneous material and this limiting case has
been discussed previously. The limit alb -+ I corresponds to the two-dimensional problem
of a crack with a length of (b - a) in an inhomogeneous material under a uniform pressure
au. The stress intensity factor for this problem has been given by Sih and Chen (1981) as

(86)

where r is the gamma function. For alb =0.99. the present numerical results in Table 3(b)
are in excdlent agreement with the above formula. For aib -+ 0, the stress intensity factor
at the outer radIUS approaches that for a uniformly loaded penny-shaped crack. This limit
is given in Kassir and Sih (1975. pp. 382-392) as

, 2 (7tiX) IK" = a b(I-.):- -cos - --
I 0 1t 2 (I-:x)' (87)

The results for K~ in Table 3(a) for alb = 0.01 are also in excellent agreement with the
above expression.

The second loading condition corresponds to bending and is obtained by taking m = I
and Q(r) = rib. The non-dimensionalized stress intensity factors K'I and K~ are now defined
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as 1\1 = (Jil cos (U)N I -" ~K" Numerical results are given in Table 4(a) for 0 ~ 'J. < I and
0< u f> ~ 0.5 while Table 4(b) is for 0 ~ 'J. < I and 0.5 < u f> < 1.0.

Again considering Kf first in Table 4(a). the variation with 'J. for a fixed a f> is observed
to be analogolls with the previous case. A peak occurs in the stress intensity factor as :r: is
increased from zero to one. Contrary to the previous case. this peak value now increases
with increasing uib. From Table 4(b) the behavior in this range of a'b is similar to the
previous loading.

Table 4(a). N()n-dim~nsi()nalizedstress intensity factors for an annular crack In
an inhomog~ne()usmaterial under bending. 0 ,;; ~ < 1.0 < ah '" 0.5

al> 0.01 01 0.2 0.3 0.4 0.5

~=o K',' 0.054 0.170 0.236 0.280 0.309 0..'24
A;' 0.424 0.423 0.422 0.418 0.410 0.395

~ = 0.1 K,' 0.048 0.172 0.247 0.301 0.338 0.360
A~ 0.482 0.482 0.480 0.476 0.468 0.454

~ = 0.2 K',' 0.043 0.171 0.255 0.317 0.363 0395
A~ 0.541 0.541 0.539 0.536 0.529 0516

~ = 03 At 0037 0.167 0.259 0330 0.385 0.42(,
A~ 0.600 0.600 0.599 0.596 0590 0579

1 = 0.4 At 0.0.'2 0.161 0.259 0.338 0.402 0.453
A~ 0660 0.660 0.659 0657 0.652 0.642

1 " 0.5 A',' 0.027 0.153 0.256 0.342 0.415 0.476
A~ 0.720 0.720 0.720 0.718 0.714 (1.70(,

1 = 0.6 K',' 0.022 0.144 0.250 0.141 0422 0493
A;' 0.780 0.780 0779 0.778 0.775 0.7(,9

~ c 0.7 Ki' O.Ol') 0114 0240 0..1.17 0.425 0504
K~ 0838 0.8.18 08.17 08'7 0.8.15 08.'1)

1 " 0.8 K',' 0.015 0.123 022') 0..128 0.422 0.510
K~, 0894 0.894 0.8')4 0.89.' 0.892 0.88')

~ 0') Ki' 0.012 0.111 0215 11..'16 0.414 0.508
K;' O.94'! 0.94') O')4R 0')48 0')48 0.946

~ ~ O.9'! K,' 0.010 0.101 0.202 (1..'02 0.402 0.502
K~' O.9'!5 O'N5 0')')5 O'N5 0'N5 O')'!5

rI\'i'-'
r;;:"](fll cos Ohl' II ~ I

1\;' ;;:;'

Tahlc 4(h). Non-dill1ensionali/ed stress intensity fadors f,'r an annular
crack III an Inhomogcneous material under hcnding. 0,;; ~ < I.

0.5 < af" < 1.0

tI'h 0.6 0.7 0.8 0.9 0.')9

~ = 0 ;;:',' 0..125 lUll o.ns 0.212 0.071
1\7 tun 033lJ 0.290 0.214 0070

1" (1.1 ;;:',' IU(,8 0359 0.328 0.2(,0 0.098

A~ 0.4.12 0398 0347 0.2(,5 O.O<J7
1 = 0.2 At 0.411 0.409 0.382 lUIS 0.133

A~ 0.495 0.462 0.410 0.323 o 133
1 = 03 ;;:.,' 0.451 0.458 O.4.N 0.376 o IN

A;' 055') 0.527 0477 lUX') 0.17')

1 = 0.4 K',' 0.489 0.506 (J.497 0.442 0.238
;;:~ 0.625 0596 0.549 0.462 0238

~ = 0.5 1\'1' 0.522 0.552 0.556 0.515 lUll
;;:;' (J.(,') 1 0.(,(,6 0.623 0.541 0.312

~ '" OJ, ;;:: 0551 0.5')4 0.614 0.591 0.403
;;:~ 0.757 0.736 0.700 0.(,27 0.404

~ = 0.7 ;;:: 0.574 0.(,31 0.670 0.671 1>514
;;:~ 0821 0.806 0.777 IUI7 0.517

~ = 0.8 Kt 0.59 I 0.(,62 0.720 0.750 0.649

A~ 0.884 0.874 0.8S4 0.811 06S2

~ = 0.9 At 0.599 068(, 0.765 0.828 (UH17
A; 0.944 0.939 0.929 0.906 IU\l3

~ = 0.')9 1\,' 0.602 0.701 0.798 0.895 0.973

A~ 0.994 0.994 0.993 0.991 0980

[1\,'] .. ,I [K']Tl = I
I\~ = rr"lnstlh

A~.
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Focusing on the variation of K1 with alb for a fixed value of ~ it is apparent that a
peak also exists in this direction. The values of Kj tend to zero for a/b - 0 and alb .... I
while attaining an intermediate maximum value.

The stress intensity factor Rt exhibits the same variation with :x as the uniform loading
case. That is. for all values of alb it has a monotonic increase from a minimum value at
ex =0 to a maximum of approximately 1.0 at :x = 1.0. On the other hand. for a fixed value
of:x it decreases monotonically as alb is increased.

The numerical results can be partially verified by studying some limiting cases. The
top two rows in Table 4(a, b) correspond to a homogeneous materiaL This case was analyzed
by Nied and Erdogan (1983). They did not give tabulated numerical results: however the
present numbers agree very well with their figures once the different definition of stress
intensity factor is accounted for. In the limit alb .... I, a two-dimensional plane strain crack
of length (b-a) under uniform loading of magnitude (Tocos(O) is obtained. Hence the
numerical results in the last column of Table 4(b) should be very close to the last column
of Table 3(b) (and equivalently eqn (86) with the term cos (8) added to the right hand side).
Comparison of the last column of these two tables for alb = 0.99 reveals almost identical
numbers. The slight difference results from the cos (0) stress variation which still has a small
effect for alb = 0.99. Finally the results for Rt as alb ... 0 may be checked against the
analytical solution for a penny-shaped crack. Using the crack face loading in eqn (71) with
m :::::: I and Q(r) :::::: rib. the stress intensity factor can be analytically evaluated by integrating
the Green's function in eqn (34) giving

(88)

The results for Rt in the first column of Table 4(a) for a/b ::: 0.01 agree very well with the
above limiting case.

5. OISCUSSION

This paper has developed a basic solution procedure for certain mixed boundary value
problems in potential theory. The solution here is appropriate for boundary value problems
with annular type circular or non-circular regions. The method converts a pair of coupled
integral equations to two non-coupled equations and writes their solution in series form.
The terms of the series are evaluated as successive numerical integrations of elementary
functions and hence the method is mathematic,llly simple and tractable. Furthermore, it is
illustrated that the method can handle certain types of inhomogeneous medium as easily
as the homogeneous caSe. As an example. the solution procedure wus applied to fracture
mechanics and numerical results were given for a circular annular crack in an inhomo­
geneous material where the modulus varies as a power law from the crack plane ==0
(E = Eol=I', Eo =constant, 0 < !1. < I). The results were compared to previous calcubtions
and limiting cases available and the numerical calculations were found to be of very high
accuracy.

A('kn()...le(~'1t'ftI/:lItS- Thc authors arc grateful to the helpful comments provid.:d by th.: reviewers.
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